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ANOMALIES IN SPACES OF EVEN AND ODD DIMENSIONS IN THE SCHEME 

OF STOCHASTIC QUANTIZATION 

~d. Sh. Egoryan, ~. R. Nissimov, 
and S. Pacheva 

Axial anomalies in spaces of even and odd dimensions are studied by the 
method of stochastic quantization with a generalized scheme of stochastic 
regularization. Although the stochastic regularization formally preserves 
the axial and gauge symmetries, the standard even-dimensional axial 
anomalies of Dirac fermions are correctly reproduced in the limit in which 
the regularization is lifted, while the anomalies of the chiral fermions 
are reproduced in covariant form. An analysis is also made of the 
general conditions for the existence and canceling of anomalies of 
massless fermions that violate parity in odd-dimensional spaces. The 
stochastic scheme works in odd-dimensional spaces when the parity-violating 
anomalies are absent. The P-anomalous part of the effective action of 
infinitely heavy fermions in odd-dimensional spaces is calculated 
explicitly. 

I. Introduction 

The scheme of stochastic quantization [i] is attractive because of its following 
important properties: a) Faddeev-Popov ghosts are absent [1,2]; b) the N + ~ limit of 
Yang-Mills theory with SU(N) symmetry can be readily studied [3]; c) nonholonomic systems 
can be readily quantized [4]; d) stochastic quantization is convenient for nonperturbative 
Monte Carlo calculations on lattices [5]. 

Recently, stochastic quantization has also been applied to gauge theories with fermions 
[6-9] and supergauge [7-9] and gravitational theories [i0]. Stochastic quantization gives 
an interesting possibility of a new regularization of field theories outside the framework 
of perturbation theory by means of a smoothing of the distribution of the stochastic 
currents with respect to the stochastic time, a procedure that at the first glance should 
not violate the symmetry properties of the original theory. 

In this paper we derive the Adler-Bardeen-Jackiw anomalies [Ii] in the framework of 
stochastic quantization, and also the anomalies of chiral (left) fermions in spaces of 
even dimension D (in the present paper, the space is assumed to be Euclidean). These 
anomalies are expressed in terms of integrals of the kernel of the quadratic Dirac 
operator V2(A) in the background field A~(x) with respect to the stochastic time. The 
final results for the anomalies are obtained after lifting of the stochastic regularization, 
this reducing to analysis of the behavior of the kernel at short times. This approach 
is similar to the method of deriving the anomalies proposed in [i]. Stochastic quantiza- 
tion gives the correct anomaly for the divergence of the axial current of the Dirac 
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fermions. The anomalies of the fermions in the scheme of stochastic quantization are 
reproduced in the covariant form (which does not satisfy the Wess-Zumino conditions of 
integrability [13]). The connection between the two forms of the anomalies, the covariant 
and the self-consistent (which does satisfy the Wess-Zumino conditions of integrability), 
is clarified in [14]. 

We then consider the parity violating anomalies of massless fermions for odd dimen- 
sions D [15-22]. 

The interest in these anomalies is due, first, to the fact that they are analogs of 
the axial anomalies for odd D and, second, on account of their connection with the 
factorization of the fermion number [17] and the quantum Hall effect [20]. Our analysis 
shows that the scheme of stochastic quantization does not reproduce the parity violating 
anomalies. The reason is that stochastic regularization leads to a gauge-invariant and 
P-even expression for the fermion current, and this does not agree with the more physical 
expression for the current obtained from the gauge-invariant definition [18-19]* 
in det(--iV(A)) in terms of the G invariant of the operator V(A) [23,24]. In the paper, 
we find general conditions (on the gauge group and number of flavors) for the canceling 
or presence of parity violating anomalies for odd D. 

We assume the standard boundary conditions for the gauge field A~(x): 

A ~ (x )= _ i g - , ( :~ , ) (O~g(~ ) )+O( Ix  ] . . . .  ), Ixl -+oo, 
x (i.I) 

D--i 
m= (x ~ x' ..... x ~-')~R ~, ~ = ~ ~ S~-', g : S~ +G--U(n). 

If the conditions (i.i) are not satisfied (for example, A~ is a static (x~ 
field or F~v is a constant (x-independent)quantity), then for odd D an additional parity 
violating anomaly can arise. The criterion for its existence is the condition [25,26] 

Pf~(~)(Oix, x)#O (<~) ,  (1.2) 

where P~(~)(~;x,x')is the kernel of the spectral density of the Dirac operator V: 

2. Stochastic Quantization of Fermions 

The basic tool of stochastic quantization -- the Langevin equation for the Dirac 
fermions ~(m, x) in the background field A~(x) -- has the form 

a,r x)=-[VZ(A)+m']r x)+~(%x),  a+~(~,x)=--[~2(A)+m2lT~(v,x)+~(~,x), 

V(A)=%V,=%(a,+iA.), A.(x)=T"A,a(x), ~ = 0 , . . . , D - t ;  a = 0 , . . . ,  n~-l; 
(2 .1)  {?.~.}=-28~., ~+=-?., ~(.+,)=i.(.+~n?0...?~_~=(~(.+,))+, 

?c'+~)'=~t ( f o r  odd D); tr(T~Tb)=n8 "b, T~Tb=~b+(d~ 

In (2.1), T a are the Hermitian generators of the group U(n), T O belongs to the sub- 
group U(1), the superscript T denotes the transpose; and the symbol + Hermitian conjuga- 
tion; n, ~ are the stochastic currents with the distribution 

this leading to the correlation function 

<~(~, x)~(~', x')>=28(~--~')[m-iV(A)]Sc')(x-x'). (2 .3)  

The main assertion of the scheme of stochastic quantization is expressed by the 
equation 

<F(~(x),~(x)) >~= lim <f(~(%x),~(%x))>~, (2 .4)  

where the  index Q denotes  the  o rd ina ry  quantum mean of the  f u n c t i o n a l  F(~(x) ,  ~ ( x ) ) ,  the  
index ~ denotes the stochastic mean with weight (2.2), and ~(m, x), ~(~, x) on the 

*In addition, there is a communication of A. M. Polyakov. 
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right-hand side of (2.4) solve Eq. (2.1) with arbitrary initial data. We take zero- 
value initial data at �9 = --=. Then the solutions of Eq. (2.1) take the form 

�9 (~, x)=(~n) (+, ~), ~(~, ~ ) = ( ~ ) ( ~ ,  z), (2.5) 
G(*, x; z', x') =0(*-v ' )exp  { - ( , - , ' ) [ m ' + ~ ( A ) l } ( x ,  z'). 

For our choice of the initial data, the passage to the limit �9 + ~ in (2.4) is not 
essential (in this case, (2.4) is valid for all finite ~). The mass term in Eqs. (2.1)- 
(2.3) is needed to achieve the equilibrium state (2.4) when the operator V(A) has zero 
modes. 

The stochastic regularization [7,27] is introduced in (2.3) as follows: 

<~ (~, x), ~(~', x ; )>=2~(~-~ ' )  [m-~V (A)] 8 (~' (x-x'), 
(2.6) 

lim8~(~)=8(~), 8~(--z)=8~(x), 0,~8~(z) I,=0=0; k = 0 , . . . ,  L--i, 

where L i s  an i n t e g e r .  The f u n c t i o n  6A(~) can be r e a l i z e d ,  f o r  example, as fo l lows :  
~ (z) =~/~ (L!)-~A (A{*I) ~ exp (-AI~I).  

We a l s o  f o r m u l a t e  t h e  scheme of  s t o c h a s t i c  q u a n t i z a t i o n  f o r  c h i r a l  ( l e f t )  fermions  
in  the  background f i e l d  *L(Z, x) f o r  even D. In  t h i s  case ,  Eqs. ( 2 . 1 ) ,  ( 2 . 3 ) ,  and (2 .6 )  
a r e  r e p l a c e d  by 

O,,~ •  ( ~ + )  ,~• O,{~ •  (~+~0) r~ • • (2 .7 )  

<~• - • , x )~  (~, s  ') (2 .8)  

where we have used the notation 

~=~(~0+ ~0)' ~176176 ~176 

~ (A)._~r. (~+ ~), V~(A)=(?+ 0 ) , ~(D+I)= (~ __~), (2.9) 
.~+=~VAA), r177162 ~ •  

and similarly for ~. 

In (2.8) and (2.9), H 0 and H0 are the projection operators of the zero modes of the 
operators ~)+~ and ~9~+, respectively. In the calculation of the stochastic mean values 
(2.4) it is helpful to use the equations 

~o-.~=..~Ho, -~+no=Ho..~ +, ..~ exp {--, .~+.~}= (exp (--~.~..~+})..~, 
(2.1o) 

~D + exp ( - - , ~ + } =  (exp { --z~D+~)) ~0 +. 

We have in f a c t  e l i m i n a t e d  from the  Langevin equa t ions  the  zero modes, and t h e r e f o r e  t he  
e q u i l i b r i u m  s t a t e  (as  in ( 2 . 4 ) )  c a n b e  a t t a i n e d .  

Note t h a t  (2 .8 )  e x p l i c i t l y  p r e s e r v e s  t h e  c h i r a l  gauge i n v a r i a n c e .  

When z e r o - v a l u e  boundary c o n d i t i o n s  a t  ~ = --~ a r e  chosen,  t h e  s o l u t i o n s  of  Eq. (2 .7 )  
have the  form 

,~(~, x)=(G~n~ ~) (~, x), ~ ( ~ ,  x ) = ( ~  • (~, x); 

GL(T, X; ~', X')=0(T--T')exp {--(~--T')..~..~+} (x, x'), (2.11) 

~(~,  x; ~', x')=0(~-~')exp {-(~-~')~0+~}(~, ~'). 

3. Chiral Anomalies in Stochastic Quantization 

We now turn to the discussion of chiral anomalies for even D in the scheme of 
stochastic quantization. We first consider the covariant divergence of the axial current 
of the Dirac fermions: 

v;V~ ~+''+ (x)- V:~<~T ~ (-~) ~(~+',>~= 
--2m<~Ta~(=+"r (m-~V (A)*)-' (7--0,r ] T"](~+'r + 
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<~r",I'+" [ (m-iV (A))-'  01-  0,r l >~, ( 3.1 ) 

where -~v~176176 ~ -  ~ ~ ~ t ,. Substituting (2.5) in the right-hand side of (3.1), averaging with 
r e s p e c t  to t he  s t o c h a s t i c  source  in accordance  wi th  ( 2 . 6 ) ,  and us ing  the  o p e r a t o r  r e l a t i o n  

j ' dv  exp (-xH) -----H-'{exp (-~hH) -exp (- '~H) }, 
I:  I 

we obtain 

V~%/~ "+t'* (x)=2m2I d~ (exp (--'~m ~) )tr[r"Z ''+i' (exp (--~q~ (A))) (x, x) ] ~ d~%,(~') -- 

4 ~ d~6A (1:) (exp (--xra 2) ) tr[ Ta~ (D+I) (exp (-~V~ (A)) ) (x, x) ], (3 .2 )  
0 

where t he  f i r s t  term on the  r i g h t - h a n d  s i d e  a r i s e s  from the  term-2m<~T~ 

The p r e sence  of  dA(~) in (3 .2 )  r e g u l a r i z e s  t he  u l t r a v i o l e t  d ive rgences  m a n i f e s t e d  in 
t he  form of  s i n g u l a r i t i e s  of  t he  type  O(~-k) ,  k _-> 1, in t he  i n t e g r a l  over  ~. These 
d i v e r g e n c e s  can b e  ana lyzed  e x p l i c i t l y  by means of  S e e l e y ' s  expansion [28] 

(exp{_T~Z(A)}) (x ,x)= 2 ~(~-v)/~ ("~ ,7-,2,~, (~-~w2~v ~ ) ;  x), (3 .3 )  

where ~(D)(j_D)/2 are local gauge-invariant functionals of dimension j. A recursive procedure 

for calculating these functionals correctly is described in Appendix A. 

Using (A.3), (A.5), and (A.9), we can readily show that 

tr[T ? ~(~-D)/~(V (A) ;x ) ]=0  f o r  ]<D. 

Thus, when we go to the limit A + ~ in (3.2) there are no ultraviolet divergences, 

V~bJ~ ~+'~ (x) =2 ~ d~ (exp ( - a ) )  tr [r~f(~+l)X 
0 

exp (-- ( (a /m 2) V 2 (A)) ) (x, x) ] -2  tr[ T~(D+i)q)~ ~) (V 2 (A); x) ]. (3 .4 )  

The second term on the right-hand side of (3.4) -- it does not depend on the mass m -- can 
be readily transformed (by means of (A.3), (A.5), and (A.9)) to 

--2 tr [r~?<'+')r (V~(A) ; x)] = - 2 [  (D/2) !(4#) Dz2]-'e~ ..... , ,  tr [T~F,,, . . . .  f,,,_,,,,,] (3 .5 )  

(and t h i s  i s  equal  to  -2C,n(F;  x) f o r  a = 0) ,  where C,/2(~; x) i s  t he  d e n s i t y  of  D/2- th  
characteristic Chern class (see, for example, [29]). For the first term on the right-hand 
side of (3.4) in the limit m ~ ~ we find, using (B.2a) in the Appendix, 

2tr [r~7(~+~ ~(A) (x, x)] (3 .6 )  

(and this is equal to 2 index (V(A); x) for a = 0), where II$ (A) denotes the kernel of the 
projection operator of the zero modes of the operator V(A), and index(V; x) denotes the 
density of the index of the operator V(A) (see [12]). Collecting together (3.5) and 
(3.6), we obtain the standard form of the D+dimensional Abelian [12,30] and non-Abelian 
[31] anomalies: 

0~J~ ~+1~~176 (x) =2 [index (V (A) ; x) -C~/~ (F; x) ], (3 .7 )  

Vabl(D+l)b {--\ �9 �9 . ,  tx) == 2 {tr [ra?cD+l)II~ (A) (x, x)] -- [(DI2)! (4~)Dl21-1 e~,... ~tD tr [TaFmm. F~D_iUD]) , ( 3 .8  ) 

where a, b = 1, . . . ,  n 2 -- 1. 

We also briefly discuss the chiral anomalies of the left fermions in stochastic 
quantization. Using Eqs. (2.7), (2.8), (2.11), (2.10), and (3.3), we find 

ab L,b V~ J~ (x) ~V~'~ X)O~,+r X) >~ = lim 2 ~d~6~(~)tr/T~ (exp(--~)+~))>< 
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( l-H0) (x, x ) -  (exp(-z~)~+))  ( i -~0) (x ,x)]}= 

~[T"(n0(x, x)-Ho(x ,x) )  ]+ tr[T~(@~ 9) (~+~0; x ) -  ~ ) ( ~ ) + ;  x)) ], (3 .9 )  

where ~0 denotes  S e e l e y ' s  z e r o t h  c o e f f i c i e n t ,  which can be r e a d i l y  c a l c u l a t e d  in accordance  
wi th  the  a lgo r i t hm d e s c r i b e d  in  Appendix A. Using Eq. (3 .5 )  and the  r e p r e s e n t a t i o n  
~(~+~ (2.9), Eq. (3 .9 )  can be t r ans fo rmed  as fo l lows :  

ab I b V,, 1,,'" (x)= tr[T:'~(v+~)H~ (A, (x ,x ) ] -  ~[T~162 ") (V~(A); x) I=V~V,~b~9+"~(x), (3 .10)  

where the  l a s t  term i s  g iven by Eq. (3 .7 )  when a = 0 and by Eq. (3 .8 )  fo r  a = 1, . . . .  
n 2 -- i. 

Equation (3.10) shows that the anomalies of the chiral fermions of the scheme of 
stochastic quantization are reproduced in the covariant form. The connection between the 
covariant and self-consistent forms of the anomalies is discussed in [14]. 

4. Parity Violatin~ Anomalies and Problems of 

Stochastic Quantization in Odd-Dimensional Spaces 

We consider the fermi on current in stochastic quantization: 
r 

tr{T=%[ (V (A)+im)exp(--~V2(A))] (x, x)}. (/4.1) 

We apply Seeley's expansion (3.3) to Eq. (4.1): 

{V (A)exp (-~V* (A)) } (x, x) = 2 z <~-"-',n ~<j-o-~,/2m '~> (V2(A) [ V (A)) (x). (4 .2)  
j = 0  

For odd D, we obtain by means of (A.3), (A.5), (A.6), and (A.9) 

t , T  = ~c~) ( ~ P ( A ) I V ( A ) ) ( x ) I = m  %.,(~-.~n(V'(A);x)]=0, ]<D--2. (4 .3)  r[ ~(j-V)l~ , rTa ~.. (v) 

We see that the right-hand side of (4.1) does not have ultraviolet divergences, i.e., 
singularities as T ~ 0, when the regularization is lifted. The final result has the form 

J~'(x)---- j" d~exp(-Tra*)tr[T~%([7(A) exp(-xV2(A))) (x,x)]+ tm j" d~ exp(--~ra~) X 
o o 

tr[T'% exp(--x~7' (A)) (x,x) ]. (4 .4)  

Under P transformations (D odd) we have 

~p ~ ,(~,xlA ",~%m~)=-i~,(~,x'tA.,%m), (4.5) 

where in the argument of the solution ~(~, x) of gq. (2.1) we have explicitly indicated 
the dependence of the solution on Au(x), n(T, x), and m and we have used the notation 

AI(x)=(Ao,  -A~, A2 . . . .  , A,_,) (x'), ~l'(~, x)=- i~J l (% x~), 
(4.6) 

m~=-m, x~_~ (x ~ -x ~, x z, ..., z'-'). 

The kernel of the Dirac operator is transformed as follows: 

V(A ~') (x, x ' )= 'hV (A)(x ' ,  x' P)~. (4 .7)  

In accordance with (4.7), the first term on the right-hand side of (4.4) has normal 
parity, and it can be rewritten as 

j~ (norm) (x) ~- ] dz exp ( -  zm 2) tr [ T~% (V (A) X 
0 

exp (-~V~ (A)) ) (x, z) ]=  (2i)-' 6 In det[ m2+ V-~ (A) ]. (4 .8)  
M~:(x) 
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The second term on the right-hand side of (4.4) can lead to parity violation if it does not 
vanish in the limit m + 0: 

j~(rv) (x) -- ira~ d'~ exp (-~m~) tr[T"~. X 
O 

(exp ( - ~ V '  (A)) ) (x, x) ] = ~A," 

exp (-Tm') Tr[ Erfc (~,1. ~ (A)) - Erfc (~'~) ], 

X 
0 

:o 

Erfc(a)  = 2~ -'1` ~ d~ e x p ( - ~ ) ,  

lim J~ (Pv) (x) ~ lira ira -z ~ dcz exp (--  ~) X 
0 

tr [r"'~. (exp ((-- a/ra ~) ~ (A))) (x, x)l = i~ sign (ra) tr [r=?~Pq(A) (0; x, x)]. 

In (4.10), we have used Eq. (B.2): 

lira exp (-- ~ 2  (A)) (x, x) 

{ IIVo (A) (x,x), i f  V(A) has  z e r o  modes,  

(~/'r)'APq(A)(O;x,x), i f  V(A) does  n o t  have  ze ro  modes,  

(4.9) 

(4.10) 

(4.11) 

where P~(~) is the kernel of the spectral plane V(A). 

The parity violation in (4.10) must be interpreted as spontaneous (not anomalous) 
since the appearance of the factor sign(m) in Eq. (4.10) shows that the ground state is 
degenerate when the parity violating mass term m~@ (see (4.5)) is ignored. 

As is shown in Appendix B, for the standard boundary conditions (i.i) 

{ ~(0) II~( A ) ( x , x ) = ~ ,  i f  V(A) has ze ro  modes,  

P~(A) (O; x, x) ----- 0, i f  ~(A) does  n o t  have  ze ro  modes.  

T h e r e f o r e  we o b t a i n  (up to o r d i n a r y  i n f r a r e d  d i v e r g e n c e s  a s s o c i a t e d  w i t h  t h e  z e r o  modes o f  
t h e  o p e r a t o r  ~7(A)]2(PV)(x)[~=o=O)a P - i n v a r i a n t  r e s u l t  f o r  t h e  t o t a l  c u r r e n t  as w e l l  in  t h e  
scheme of  s t o c h a s t i c  q u a n t i z a t i o n :  

]= (so) (x) [~=0 ---- lira i f (norm)(x)= (2i)-~ 6 In det V~(A). 
m-.o 6 A . ~  

However, the result (4.4), (4.13) is not identical to the well-known expression 

f .=  (x) ----<~(x) r ~ (--i-f.) r (x) >Q : -- i In det[-- (re+iV (A)) ], aA.o(x) 
which presupposes the gauge-invariant definition of in det[--(m + iV(A))] [18,19]*: 

In de~ [-- (m ~- iV (A))] : I/~ In det (m ~ + V~ (A)) - -  

i ~ - ~ ( A ) - - T  d~ exp(- -~m 2) • 
0 

Wr[~rfc(~'/,~(A))--~rfc(~'/,o~))]- Sct(A), Erff'~-~ (a) =sign (a) Erfc (]a]);  ( 4 . 1 5 )  

(4.12) 

(4.13) 

(4.14) 

In det (m 2 -~ ~2 (A)) ~ -- i dT~-i exp (-- Tm ~) • 
0 

- -  ds -[m'+,,(.l)] (s)is=0; (4.16) 

*See the footnote on page 1275. 
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..~-oo 

~1r (A) ---~ I d~, sign ~, Tr [P~(A) Q') - -  Po (),)l ~- 

i d'~ (~'0 -'/, Tr [V, (A) exp (--  "~V~ (A)) -- 8 exp (--  ~0DI. 
0 

(4.17) 

By means of Seeley's expansion (3.3), (4.2) and (A.3), (A.5), (A.6), (A.8), and (A.10) 
we can readily show that for odd D there are no ultraviolet divergences in the integrals 
(4.16) and (4.17) over <. The operator traces in (4.15)-(4.17) are also well defined by 
virtue of the existence and completeness of the wave operators U• _~2) (in the 
sense of scattering theory) for the boundary conditions (i.i) (see Appendix B). The 
second equation in (4.16) is the ~ regularization [32] of in det of the positive operator 
~2 + m 2, and ~I~(A) (4.17) is the N invariant [23] of the operator 7(A). Actually, the 
regularization of the function in det (4.15) is formally correct for all self-adjoint 
elliptical operators. For ~ (A) in (4.17) we have the following properties with respect 
to gauge and P transformations: 

~ ( A  q ) = ~ ( A ) ,  ~ ( A  P ) - ~ - ~ ( A ) .  ( 4 . 1 8 )  

The appearance of q~ in (4.15) represents in accordance with (4.18) the general form 
of the parity violating anomaly (as m + 0) if the anomaly is not cancelled by a suitable 
choice of the counterterm Sct(A) in Eq. (4.15). We now discuss the problem of the 
canceling of the parity violating anomaly by means of a local counterterm Sct(A). 

Using the operator identity 

6(Tr[Qexp (-~Q~)]}=(d/dT'~){~'~TrTQ exp (_~Q2)} 

and (A.I) and (A.2), we obtain from Eq. (4.17) 

- -  [T ~ - , A ( V  (A);x)] (6/6A~(x))~I~(A)---~ 2i~-%tr a (D) ~2 ,2itr[T~?~p~(a)(O;x,x)]. ( 4 . 1 9 )  

Direct calculation of the first term on the right-hand side of (4.19) by means of (A.3), 
(A.6), and (A.10) gives 

D--i ), . . . .  F . o  . . . . . .  

(--t) (~ ( 5/TA.=(x) ) W~2~ (A ) , ( 4 . 2 0 )  

where  W ~  s (A) i s  t h e  w e l l - k n o w n  C h e r n - S i m o n s  t e rm  [ 2 9 ] :  

re) g (D) + T]] (a) tAPX uz r ra~ (4 .21  ) Wc~(A)=Wc~.s(A)  N . (g ) ,  , , c ~ x  ~ = - - " c h - s ~ ;  

The topological charge ND(g) (4.22) has the properties [33] 

(4.22) 

Z, i f  XD(U(n))----=Z, i . e . ,  f o r  odd D < 2 n ,  
ND(g)--~ O, i f  ~D(U(n))=/=Z, i . e . ,  f o r  odd D > 2 n .  ( 6 . 2 3 )  

For example, for D = 3 the Chern-Simons term has the form 

(a) 2 -i [ xtr{A~[,~(A)-t" .2/,A~A~A~}, Wch-s=(t6~c ) e.,~j d 3 (4.24) 

and this is the well-known topological mass term of the field A~(x) [34]. 

By means of (4.19), (4.20), and (4.12) we finally obtain [23] 

~ (A) ~ (-- I)(D+I)/~2W~s (A) + B (A), 

where B(A) has the properties 

(5/5A~ a (x)) B (A) = 2i tr [Ta7~Pr @; x, x)] ---~ 

( ~, if ~(A) has zero modes, 

0, if ~(A) does not have zero modes, 

(4.25) 

(4.26a) 
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B(Ag)=B(A)+(-I)(D-')/~2N~,(g), B(AP)=-B(A), (4.26b) 

B(A)=--O, if n,(U(n))#I,i.e.,D>2n (4.26c) 

(see (4.23)). 

Thus, B(A) is a piecewise constant functional and takes even integral values. Indeed, 
B(A) can be identified with the index of a suitable (D + l)-dimensional Dirac operator 
with coefficient 2 (see [23]) with even D + i. These properties of B(A) are true for the 
boundary conditions (1.1), which make it possible to identify the space R D with the 
compact space S D. But if F~v(A) does not vanish as Ix[ + ~, Eq. (1.2) can be satisfied, 
and the term 2itr[T~7~P~cA~(0; z, x)]~0 (<~) in Eqs. (4.19) and (4.26a) will represent a 
nontrivial boundary effect. Since in this case the space is not compact, this boundary 
effect is determined by the asymptotic (scattering theory) properties of the operator 
V2(A) (Appendix B). 

Substituting now (4.25) in (4.15) in the limit m + 0 in the case of Nf > i fermion 
flavors, we obtain 

Nflndet[--iV(A)]=~/2Ntlndet[V2(A)]-~/2i~NjB(A)+ ~--r I~(D-~)/2i"Nj ~ I"TffTiO&lJX--l~t'fSot(A).ch-SlXZ2 (4.27) 

There are now the following possibilities for parity violating anomalies in Eq. (4.27) (the 
case D = 3, see [15]): 

I. If z~v(U(n))=Z (i.e., D > 2n) or ~D(U(n))=Z (i.e., D < 2n) simultaneously with 
the condition that Nf is even, we can choose the counterterm 

Sa (A) =in (--i) ('-O/2Wch_S (A), (4 .28)  

i.e., 

N I In act (--iV (A)) =~/2Nj In det ( V~ (A)) -'/2i~NsB (A). ( 4.29 ) 

Therefore, the parity violating anomalies (for the boundary condition (i.i)) for A~(x) 
are eliminated: ~NfB(A) = 0 (mod 2~) under these conditions. 

II. If ~v(U(n})=~[ (i.e., D < 2n) and simultaneously Nf is odd, the choice (4.28) 
for elimination of the parity violating anomalies is not good, since we violate the gauge 
invariance of Eq. (4.29): 

Ns{In det [-iV (A~)]--In det [-iV (A)] }= 

i~(-I)('+~)/~N~N,(g)~O (m0d 2n) (g(x)~SU(n)). (4 .30)  

Thus, in case  I I  ( f o r  t he  s t a n d a r d  boundary c o n d i t i o n  ( 1 . 1 ) ) ,  p a r i t y  v i o l a t i n g  
anomal ies  a r e  i n e s c a p a b l e .  

The a n a l y s i s  of  t he  anomal ies  p r e s e n t e d  above in the language of  the  c u r r e n t  d~(x) 
(4.14) has in accordance with (4.27)-(4.30) the form 

J.~ (x)Im=o =NII dt tr [Ta?~ (~ (A) exp (-- t9  s (A))) (x, x)] - -  igN/tr [Ta?.P~(A)(0; x, x)] + 

0 for condition I, 

• tr[TaF~1~ "'" F~D-~D-I]' for condition II, 

where 9~v denotes the non-Abelian SU(n) part of F~v(A). 

Taking into account now the equation Pq(a)(0; x, x)=0 for the boundary conditions (i.i) 
(if V(A) does not have zero modes), we can readily see from (4.31) that stochastic quantiza- 
tion (Eqs. (4.8) and (4.10)) reproduces the correct current (4.31) for condition I, i.e., 
when there are no parity violating anomalies. 

For completeness, we also mention that parity may also be violated spontaneously 
(when there are no parity violating anomalies). This problem is discussed in [35] and [21]. 

(4.31) 

5. Conclusions 

In the present paper, we have determined the domain of applicability of stochastic 
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quantization with stochastic regularization. This scheme correctly reproduces the axial 
anomalies of the Dirac fermions for even D. At the same time, the anomalies of the chiral 
fermions are reproduced in the covariant form. The scheme of stochastic quantization 
does not reproduce the parity violating anomalies of the massless fermions for odd D (and 
this occurs when the homotopy group ~,(U(n))=Z (D<2n) and simultaneously the number Nf 
of flavors is odd). For odd D, stochastic quantization works in the absence of parity 
violating anomalies n~(U(,))=Z (i.e., D > 2n) or (~,(U(n))~Z and simultaneously Nf even). 

We also make a remark concerning the criterion of spontaneous breaking of the chiral 
symmetry in the external field A~(x) for even D: 

lira <~>Q~0 (<~). 

The following equation [26], 

lim <~,>Q = -- n sign (m) tr  [PC(a) (0; x, x)], 
n~--~0 

shows in conjunction with (4.12) that spontaneous violation occurs under the condition of 
nonvanishing of F~9(A) as Ix I + ~. In particular, in the case of a static field A~(x), 
substituting (B.II) in (5.1), we obtain 

(~D I+~Ao) ~ ' lim <~p>Q : - -  n sign (m) tr  [H 0 - (x, x) + 1]~vD-'-'a')(x, x)], 
m~ 0  

this being the local version of the corresponding assertion of [36]. We see that the 
criterion of spontaneous violation of chiral symmetry for even D is analogous to the 
corresponding criterion for odd D (4.10). 

Our final remark concerns the limit Iml + = of Eq. (4.15) [21,22]. 

With allowance for (4.19) and (4.20) and the equation 

( x , = :  I ,, ( +  . ] .  
0 

0 

we obtain 

0 for condition I, 

( ~  t)(D-*)/2n (8/8A~ ~ (x)) (D) Wch-s(A) f o r  c o n d i t i o n  I I  

(5.1)  

(5.2)  

(5.3) 

[ ( - -  i)(m-1)/~ sign (m) n (8/8A~ ~ (x)) W~).s (A) f o r  c o n d i t i o n  I ,  
l ira i T 1 J ~  a (x) ( 5.  4 ) ) 

T.,(D) for condition II. J~l-~ [ (_ i)<o-1~I~ [I + sign (m)l n (~/SA: (x)) vv ch~ 

From Eq. (5.4) there now follows a P-anomalous effective action for odd D: 

limNllndet[--(mq-iV(A))]~-insign(m)(--l){D-1)/%ViW(c~)_s(A) for condition I, (5.5a) 

l ira N / l n  det [-- (m -}- iV (A))] = 
Iml~  

in [i-~ sign (m)l (-- l)(D-1)/~NfW(c~)s (A) for condition II. (5.5b) 

Note that in (5.5b) the parity violating anomaly due to the ~ regularization (4.15) 
and the anomaly that arises in the limit m + --~ cancel each other. 

Two of us, 9.. Nissimov and S. Pacheva, would like to thank A. M. Polyakov for helpful 
discussions. 

Appendix A: Behavior of the Kernel of the Operator 

V2(A) at Short Times 

We consider Seeley's expansion [28] of the kernel (exp(--x~2(A)))(x, x) at short x 
(A~(x) satisfies the boundary condition (i. i)) : 

$=0 

(A.I) 
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~(D) .., The Seeley coefficients ~(~_~.. are gauge-invariant functionals of dimension j and are 
determined by means of the symbol o(x; ~, X) of the operator V~(A) -- X: 

[~ (A) -~]~(~) (x-#) = (2~)-I' I d~~ (~; i' x) exp ~ (x, #), 

o(z; ~, X)= Z .~(z; L ~), a~(z; p~, pZX)=p~o~(z; ~, X) (p>0), 
k~0 

~(~; L X)=V-X, ~,(x; L X)=2~A~(z), ~0(~, L X)-----m~A~+A.%+%~[~,, ~]F~(A), 

(i)~ z') (~_m/~(V~(A); z) = 
P 

60,---- Z (~1)-'(0~0~-~) (-iO,)~R_~_i, /=0, t, 2 . . . . .  
. 4 + k + { ~ [ ~ l  

The contour of integration r in (A.3) and (A.8) passes down (from above to below) the 
imaginary axis, passing round the origin on a small circle to the lef't; =--(~ ..... 9~), I=l=Ze, 

=!=H(=d). ~-,_~ satisfy the homogeneity relation, and the asymptotic series Z N_=_~(x;~,~) is 

the symbol of the resolvent [~2(A) - ~]. 

From (A.2) and (A.4) the functions R are determined: 

R _ ~ _ ~ ( ~ ; L ~ ) = ( - O ~ ( ~ - ~ ) - ( ~ + ~ ) ( ' / d [ ? ~ , ~ ] F ~ ( ~ ) ) ~ + . . . ;  
l 

(A.2) 

(A.~) 

(A.4) 

(A.5) 

(A.6) 
%-a 

where the ellipses denote terms containing less than 2s of the 7 matrices. 

Similarly, for [V(A)exp(--T?2(A))](x, x)we have 

[ V (A)exp(-zV~ (A))] (x, x)= E "('-D-''-" aJ((~--)D-''2 (V2 (A){ V (A))(x), (A. 7 ) 
,~--0 

P 

The following expressions were also needed for the calculations: 

{ tr[~(~+,)% ... .  Zf,~) =0 (k<O). (A. 9) 
tr(~:(~ %o)=2~ ~176 D even, 

(~<%(~-I)), (A. i0) 
D odd. 

{ ~(T''''~"2k+0=0 , ~ o o 

Appendix B: Behavior of the Kernel of the Operator 

V2(A) at Large Times 

The asymptotic behavior of (exp(--~2(A)))(x, x) as T + ~ depends strongly on the 
behavior of A~(x) as Ix I § ~, and also on D. The kernel is related to the spectral 
density P by 

(exp (-- T9 ~ (A))) (x, x) dkP~ (A) (A) ( ~ -  =; x, x) e -~. 

The asymptotic behavior of this expression as �9 + ~ is determined by the behavior of 
P in the limit I + 0. In the limit T § ~ we obtain for (B.I) 

HI (A), if V(A) has zero modes, (B.2a) 

(~/~)%Pg~)(O;x,x), if ~(A) does not have zero modes. (B.2b) 
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Equation (B.2a) is obtained with allowance for the equation 

~ (~; x, x') = 5 (~) n~ (~) tz, ~') + P~ (.~) (~; ~, z'), 
v (A) 

where P~(A)(0; z, x')=0, and N~ (~} is the kernel of the operator of the zero modes. 

In the case of (B.2b), P satisfies the relation 

P~(A)(O;x,x) = [UiP~(A~)(O)U**](=.x), (B.3) 

where U• are the wave operators (in the sense of scattering theory) of the pair H ~ O:(A) 
and H 0 ~ O=(A as) (the total and free quantum-mechanical Hamiltonians, respectively): 

U~U~(H, Ho)=s-lim [exp(~tH)exp(-i~Ho)], (B.4) 

and A~S(x) denotes the asymptotic form of Ao(x) as Ixl + = continued to the complete space 
R D. In accordance with the general theorems of scattering theory [37], existence and 
completeness of the wave operators (B.4) is guaranteed if 

A.(x)=A.~(x)+O(lxl -~-*) as  Ixl~=. ( B . 5 )  

Note  t h a t  t h e  s t a n d a r d  b o u n d a r y  c o n d i t i o n s  ( 1 . 1 )  h a v e  t h e  fo rm ( B . 5 ) ,  where  A~S(x)  ~ - i g ( i )  
( x o S ~ ) .  I f  g b e l o n g s  t o  t h e  t r i v i a l  homotopy  c l a s s  o f  t h e  g roup  ~D_~U(n)) 8~g(~)  f o r  I z l ~  " ~-~ 

(in particular, if ~D_~(U(n)) = 0, which is true for D -- 1 < 2n), g can be smoothly 
extended from S~ -~ to the whole of R D [33]. 

In our case, the free Hamiltonian has the form 

Ho~V2(-ig-~Og)=g-~(-O~)g. (B.6a) 

If the element g is homotopically nontrivial on S~ -~, it can be smoothly extended to the 
region V= = {x; Ix I ~ R > 0}, while within V~ = {x; Ix[ < R} there will be singularities. 
In this case, H 0 can be defined as follows: 

Ho~(Aas){g-~(-O2)g on V:, (B.6b) 
-0~ on Vi. 

In both cases (B.6a) and (B.6b), (exp(--~V2(Aas))(x, x')) can be readily calculated, and, 
substituting the obtained result in (B.I), we obtain 

( e x p ( - ~ ( A ) ) )  (x, ~') =IV• exp(-~2(A~D):U~*] (x, x) ~ (4u~)-~/~(x)w• 

w(x)~dDyU• (in the case (B.6a)), (B.7) 

Y (in the case (B.6b)). w(x)= ~ d'yU• 0(R-lyl)g-i(R,~)], y = [Y] 

From Eqs. (B.7), (B.2b), and (B.3) with the boundary conditions (i.i), we obtain 
v 

[6(0) II v(A)(x,x)=oo, if ~(A) has zero modes, 
P~ (0; x) (A) [U• (0) U• (x, x), if ~ (A) does not have zero modes. 

Finally, we note that P~(A)(0; z, z) may be nonzero and finite provided F~v(A) does not vanish 
as Ixl + ~. In particular, if Ao(x) is static (A~'(x)=A~(x)): 

~?D-1 = 0 VD-1 ~Ao(x) i f  (D- - t )  odd,  
VD-t n~ iAo (x) 

~-~=~h(Oh+Ah(X)), X~(X l . . . . .  zD-D, k= t  . . . . .  D- I ,  

and u s i n g  ( B . 1 ) ,  we o b t a i n  
+oo  

~d~ ,, z 
(exp(--'t~'~2)) (z, x)= ~ -  exp(--T~ z) (exp(--x(2taAa+ -~DD-0)) (z, x ) ~  (4wt)-'h(exp(---~.~v_0) (x,x). 

(B.8) 

(B.9) 

(B.10) 
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From (B.10) and (B.2b) for static field An(x) and in the presence of zero modes of ~_, we 
find 

P~ (0; x, ~) = (2~)-~ II~ D-I (x, x), 
vD 

"I II'o v~O-l+~'~176 (x, x), (D -- I) even, 
II D-t~ (x, x) = .| II(VD-I+~A9 i, ,~ • n(vo-1 -~A~)v (x, x), (D -- I) odd. 

( B . I I )  
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CALCULATION OF QUANTUM CORRECTIONS TO NONTRIVIAL CLASSICAL 

SOLUTIONS BY MEANS OF THE ZETA FUNCTION 

R. V. Konoplich 

The calculation of single-loop quantum corrections in field theory by 
the use of the zeta function is considered. General expressions are 
obtained for the quantum corrections to soliton masses and the 
probability of decay of the metastable vacuum in a scalar theory. 

i. Introduction 

In recent years, various methods have been developed for quantizing nonlinear field 
theory equations in the neighborhood of classical solutions [1-5]. Nontrivial solutions 
of such equations are provided, for example, by solitons, walls and bubbles, strings, and 
monopoles. However, a complete analysis has not yet been made of the radiative corrections 
to the energy of a monopole and string and to the process of formation of bubbles of 
metastable vacuum. In principle, even for a theory that is renormalizable in the vacuum 
sector, the radiative corrections to the nontrivial classical solutions may be divergent, 
and this would mean that in reality such objects disappear altogether from the physical 
sector. 

There exist various ways for calculating the single-loop quantum corrections to the 
nontrivial classical solutions of equations of field theory, but they are all in some way 
related to calculation of functional determinants for specific field-theoretical problems. 

A general method for calculating single-loop quantum corrections to localized 
classical solutions was developed in [3] (see also the literature quoted there), in which 
the corresponding functional determinant was expressed in terms of the asymptotic 
behaviors of Jost solutions. Other authors have calculated the single-loop quantum 
corrections under the restriction to a box space, obtaining therefore discrete eigenvalues, 
found the product of eigenvalues, and then allowed the dimensions of the box to tend to 
infinity. Thus, calculations were made of the quantum corrections in (i + I) dimensions to 
the soliton masses in the scalar and supersymmetric ~ theory [2,6,7] and in the sine- 
Gordon model [3,7,8], and also to the wall mass in (3 + i) dimensions in the scalar Xq~ 
theory [9,10]. An elegant method of semiclassical quantization was proposed in [ii] for 
systems of the type of the sine-Gordon model, for which one can obtain a complete set of 
action-angle variables. Interesting ways of calculating functional determinants were 
also proposed in [12,13]. There has also been an ever wider use in the calculation of 
functional determinants of the powerful formal method based on use of the generalized 
function [14,15] (see also, for example, [16-18]). 

The aim of the present paper is to show that the ~-function method enables one to 
reproduce readily and in a unified manner a number of well-known results and calculate the 
single-loop quantum corrections in the scalar theory for some new cases. 
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